A Fast Adaptive Numerical Method for Stiff Two-Point Boundary Value Problems

نویسندگان

  • June-Yub Lee
  • Leslie Greengard
چکیده

We describe a robust, adaptive algorithm for the solution of singularly perturbed twopoint boundary value problems. Many different phenomena can arise in such problems, including boundary layers, dense oscillations, and complicated or ill-conditioned internal transition regions. Working with an integral equation reformulation of the original differential equation, we introduce a method for error analysis which can be used for mesh refinement even when the solution computed on the current mesh is underresolved. Based on this method, we have constructed a black-box code for stiff problems which automatically generates an adaptive mesh resolving all features of the solution. The solver is direct and of arbitrarily high-order accuracy and requires an amount of time proportional to the number of grid points.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sinc-Galerkin method for solving a class of nonlinear two-point boundary value problems

In this article, we develop the Sinc-Galerkin method based on double exponential transformation for solving a class of weakly singular nonlinear two-point boundary value problems with nonhomogeneous boundary conditions. Also several examples are solved to show the accuracy efficiency of the presented method. We compare the obtained numerical results with results of the other existing methods in...

متن کامل

An efficient method for the numerical solution of Helmholtz type general two point boundary value problems in ODEs

In this article, we propose and analyze a computational method for numerical solution of general two point boundary value problems. Method is tested on problems to ensure the computational eciency. We have compared numerical results with results obtained by other method in literature. We conclude that propose method is computationally ecient and eective.

متن کامل

‎A Consistent and Accurate Numerical Method for Approximate Numerical Solution of Two Point Boundary Value Problems

In this article we have proposed an accurate finite difference method for approximate numerical solution of second order boundary value problem with Dirichlet boundary conditions. There are numerous numerical methods for solving these boundary value problems. Some these methods are more efficient and accurate than others with some advantages and disadvantages. The results in experiment on model...

متن کامل

Equidistribution grids for two-parameter convection–diffusion boundary-value problems

In this article, we propose an adaptive grid based on mesh equidistribution principle for two-parameter convection-diffusion boundary value problems with continuous and discontinuous data. A numerical algorithm based on an upwind finite difference operator and an appropriate adaptive grid is constructed. Truncation errors are derived for both continuous and discontinuous problems. Parameter uni...

متن کامل

An ‎E‎ffective Numerical Technique for Solving Second Order Linear Two-Point Boundary Value Problems with Deviating Argument

Based on reproducing kernel theory, an effective numerical technique is proposed for solving second order linear two-point boundary value problems with deviating argument. In this method, reproducing kernels with Chebyshev polynomial form are used (C-RKM). The convergence and an error estimation of the method are discussed. The efficiency and the accuracy of the method is demonstrated on some n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 18  شماره 

صفحات  -

تاریخ انتشار 1997